An ALE/embedded boundary method for two-material flow simulations
نویسندگان
چکیده
منابع مشابه
B-SPLINE METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEMS
In this work the collocation method based on quartic B-spline is developed and applied to two-point boundary value problem in ordinary diferential equations. The error analysis and convergence of presented method is discussed. The method illustrated by two test examples which verify that the presented method is applicable and considerable accurate.
متن کاملImmersed boundary technique for turbulent flow simulations
The application of the Immersed Boundary ~IB! method to simulate incompressible, turbulent flows around complex configurations is illustrated; the IB is based on the use of non-body conformal grids, and the effect of the presence of a body in the flow is accounted for by modifying the governing equations. Turbulence is modeled using standard Reynolds-Averaged Navier-Stokes models or the more so...
متن کاملAn assessment of a semi analytical AG method for solving two-dimension nonlinear viscous flow
In this investigation, attempts have been made to solve two-dimension nonlinear viscous flow between slowly expanding or contracting walls with weak permeability by utilizing a semi analytical Akbari Ganji's Method (AGM). As regard to previous papers, solving of nonlinear equations is difficult and the results are not accurate. This new approach is emerged after comparing the achieved solutions...
متن کاملAn adaptive local-global multiscale finite volume element method for two-phase flow simulations
Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine scale permeability variations through the calculation of specialized coarse scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these ba...
متن کاملAn integral equation method for epitaxial step-flow growth simulations
In this paper, we describe an integral equation approach for simulating diffusion problems with moving interfaces. The solutions are represented as moving layer potentials where the unknowns are only defined on the interfaces. The resulting integro-differential equation (IDE) system is solved using spectral deferred correction (SDC) techniques developed for general differential algebraic equati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2019
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2018.05.002